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A meetingthpuldgeeating

he IFLRC-ICLGG conferencm Saskatoowas a forumfor
T discussiof awide array of topicsof relevancéo legume

research internationally Key theme areas included

fundamentabnd appliedgeneticeind genomicsseedsnd
nutrition, nitrogerfixation, plant nutrition and legumenegaprojects,
bioticstressind plant microbenteractionsand abioticstresand crop
managementExcellentkeynote presentationsvere providedeach
morningin plenarysession®llowedby concurrensessionghich
focusedn thekeytheme®f ICLGG and IFLRC. It wasapparento
methat goodprogress beingmade throughstrongcollaborationsn
eachof thesareasdespit¢hefactthatthelegumeesearchommunity
is not largeinternationally Many opportunitiegxistfor legumeso
contributéo humanityin termsof cropdiversificatiorenvironmental
stewardshipnd healthydiets Governmentand industryneedto be
remindedf theiropportunitiefor goodnvestmenis legumeesearch
[ | anddevelopmer<=-

Universityof SaskatchewabDepartmenbf Plant
Science<€rop DevelopmenCentre Saskatogn
Canaddtom.warkentin@usask.ca)
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Exploring nodulation through gen@sequencing
and association geneticsteaicago

by NevinD. YOUNG?*, Shaun CURTINPengZHOU, Diana TRUJILEQoseph GUHLiNind Kevin

SILVERSTEIN

Abstract Genomeresequencingnableshe
discoveryof candidateloci for traits of
biological importance and also provides
insightsin to the genomicarchitectureof
complex traits The MedicagdHapmap
Consortiumis resequencinthe genomeof
Medicagauncatuta explorethe genomic®f
nodulation Previouslywe resequence@20
diverseaccessionsf M. truncatukndrelated
taxato discovemore than 6,00Q000single
nucleotide  polymorphisms  (SNPs)
Subsequergenomenide associatiostudies
(GWAS)of nodulatioruncoveregbreviously
reportedgenegplusseverahovelcandidates
Functionalgenomicsexperimentsare now
underwayto validatethesenovel candidates
Separately subsebdf linesfrom the GWAS
panel is being deeply sequencedand
assembledhdependenfrom the published
A17 referenceThis approachs essentigior
thediscoverypf DNA elementsiot foundin
the referenceaswell asfor high confidence
predictionof structuralvariantSVs) These
independerassembliealsolaya foundation
for creatingaMedicagop @ ® n 0.me 6
Key words: copynumbervariation GWAS,
next generationsequencingnodulerelated
cysteingich peptides, single nucleotide
polymorphisms

Functional validation of GWAS Map-based SNP densities are
nodulation candidates too low by a factor of two or

Earlier genomewide associationstudies More
(GWAS)analysigentifiedseveratandidate  gne of the mostinterestingobservations

genesassociatedith nodulationin Medicagog.om the resequencingiork hasbeenthat
truncatulaGaertn (4). These candidates 50 SNPsin divergenor highlyduplicated
include genes previously connectedwith  oqionsare missedif basedon alignment
nodulation(eg., CaML3, NFP, SERK) plus - 5ainst a reference rather than direct
severalnovel candidatesnvolvedin DNA o narisorpf denovassembledccessions
repair, ubiquination molecularchaperones pjgric jities  aligning reads to divergent
plus other noduleupregulated loci of anq/or  repetitive regions makes the
unknown function To validate these jqerogationof theseareasfor SNPsand
associationsye havegeneratenutantsfor  oiner yariantsdifficult or impossibleusing
most candidatesusing a combination of | oferencévased methods alone De novo
tools  Tn retrotransposon (3), stable 555embipased methods overcome these
transgenehairpin knockdown, and site ey tieshy anchoringsynteniadivergecbr

directed mutagenesis With engineered duplicated regions with flanking, highly
nucleasefl). Of thesecandidatesye have conservedinglecopyregions
characterized five mutant lines and

performed preliminary nodulation Important gene families
phenotype analysisof mutants, showing _— -
mediating plantmicrobe

statistically significant perturbations in )

nodulatiorin four of the candidates interactions can be analyzed
using de novaassemblybased

approaches

The NBSLRR (nucleotidébinding site,
leucinerich repeat)(7) and CRPs(cysteine
rich peptides)3) genefamiliesareimportant
in defenseresponseand nodule formation

'Both are large gene families forming
tandemlyduplicated clusters in labile
genomeregions Due to highlyrelatedgene
family membersand the clusterechatureof
these regions, alignmenbased methods
often fail to accuratelyassaytheseregions

De novaesequencingf
Medicag@accessions

To learnmore aboutgenomevariationin
Medicagawe sequencednd assembled9
accessions around three nodal hubs,
includingA17 and R108 For all accessions
this processachieved~90X coveragesach,
usinga combinatiorof shortandlonginsert
librariesfor usein llluminanextgeneration
sequencingrhisis sufficientfor high-quality
assemblies using the ALLPATHSLG
algorithm(2). All 19 assemblidsavescaffold

Department of Plant Pathology, St. Paul, USA N50values> 380kbp, with someaslongas

(neviny@umn.edu

2Plant Biological Sciences Graduate Program, Sresourcesfor exploring Medicaggenome

Paul, USA
3Minnesota Supercomputer Institute, 599
Minneapolis, USA
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High ratesof structurarearrangememesult
in NBSLRR gene structure changesthat
include genetruncation,domain swapping
and genefusion By contrast,the smaller
CRPstendto evolvethroughexpansiorand
contractionof genefamily membersmore

22 Mbp, providing an excellentset of

structuralvariation,complexgene families,
andpangenome

Issue AApril 2015
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often than throughgenestructuralchanges
Gene copy numbers within some CRP
families are radically different among
accessionsncludingsome Medicagpecific
subgroupsTo validateheseobservationsf
CRPexpansiomvithin the denovassemoblies,
we have supplemented llluminabased
assembliewith increasingiumbersof long
readPacBicsequences

Genome architecture of the
LEED..PEED (LP) gene family

The LP family is composedof 13 genes
encodingsmall putativelysecretedoeptides
with one to two conserveddomains of
negativelghargedesiduegt). This familyis
not presentin the genomeof Glycinenax,
(L.) Merr. LotusjaponicyRegel K. Larsen,
or the IRLC speciesCicerarietinunh.. LP
geneswere alsonot detectedn a Trifolium
pratensk. draft genomeor in the Pisum
sativunk.. nodule transcriptomgesuggesting
thatthe LP genefamilyarosewithin the past
25millionyearsMedicagacessioR108and
M. sativd.. havell and10LP genecopies,
respectivelyin A17, 12LP genesrelocated
on chromosomé@ withina93-kb window A
phylogeneti@analysiof the genefamily is
consistent with  most gene duplications
occurringprior to Medicagpeciatiorevents,
mainly through local tandem duplications
and one distant duplication across
chromosomes Synteny comparisons
betweenR108 and A17 confirm that gene
order is conserved between the two
subspeciesalthough a further duplication
occurredsolelyin A17. Therecenexpansion
of LP genesn Medicagpp andtheirtiming
and locationof expressiorsuggest novel
function in nodulation, possibly as an
aftermath of the evolution of bacteroid
terminal differentiation or potentially
associatedith rhizobiadhostspecificity

Legume Perspectives

GWAS based on structural
variant analysis

It hasalsobeenpossibléo useSVssuchas
copynumbervariant{ CNVs)andpresence
absencevariants (PAVs) as a basis for
GWAS analyses Here, an association
analysisconductedwith TASSEL using a
combinedsetof SNPsand SVsled to the
identificationof a CNV within a nodule
relatedcysteingich (NCR) peptidestrongly
associateavith a reductionof total nodule
count This NCR deletionwasvalidatedby
comparisonto de novoassembliesThe
observedCNV eventshad not beentagged
previouslyby SNP calls and exhibitedlow
Linkage Disequilibrium (LD) with nearby
SNPs These results suggestthat SVs
involving NCRs may play a role in
nodulationvariationthat hasnot beenfully
characterizedby SNPRonly methods and
hints that other SVs may also play an
importantrolein thisphenotype<sss-
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by Manish ROORKIWAMahendarTHUD| PooranGAUR, Hari D. UPADHYAYA
NarendraP. SINGHand Rajeev K. VARSHNEY

Abstract Chickpea(Cicerarietinumplays
vital role in ensuringthe nutritional food
securityin Asian and subSaharamfrican
regionsof the world. Conventionabreeding
effortsto elevateheyieldlevelsandenhance
crop productivityareconstrainedlueto low
level of genetic diversity presentin the
cultivatedgenepools Large scalegenomic
resources$n chickpeahaveenabledhe use
of molecularbreedingto developsuperior
chickpeavarieties In addition, efforts with
an objectiveto exploit the availablehuge
geneticdiversityin genebanko addresshe
issue of low productivity, ICRISAT has

Despitethe effortsto increaséhe chickpea
productivity,severalabiotic (drought, heat,
salinity) and biotic (fusarium wilt (FW),
ascochytadlight (AB), botrytis grey mould,
dry root rot, pod borer) stressesoupled
with recentchangen climatehavehindered
theyieldimprovement6). In orderto fill the
yield gap, there is a need to enhance
precisionand efficiencyof selectionsn the
segregatingenerationfor higherandrapid
geneticgainsandto meetthe currentfood
andnutritionakequirements

Recentadvances genomicsespeciallyn
the area of next generationsequencing

initiated large scalegenomere-sequencing (NGS) and genotypingtechnologieshave

projects
Key words. chickpea, genome re
sequencingnoleculabreeding

Introduction

Chickpea(Cicerarietinunt..), the second
largestcultivatedgrain food legumein the
world, is highly nutritious and protein rich
source which contributes to income
generatiomndimprovedilivelihoodof smal
holder farmersin subSaharanAfrica and
Asia During 20122013 the area,
production and productivity of chickpea
werel35 million ha, 131 million tonesand
967kghal, respectivelfl).

reducedthe cost of sequencingirastically
enablindargescalegenomeae-sequencingp

understanthe genetia@rchitectureAs apart

of severalglobal initiatives and strategic
collaborationswith NARS partners,large
scalegenomiaresourceincludingmolecular
markers, comprehensive genetic maps
including physicalmap, trait mapping,and

transcriptomic resources have been
developedl?. In the caseof chickpeaarge
scale molecular markers including simple
sequenceepeat§SSRshybridizatiorbased
Diversity Array Technology (DArT) and
sequencebased markers such as single
nucleotide polymorphisms (SNPs) have
becomeavailableUseof a particulamarker
systemfor geneticsresearchand breeding
applicationdependsn the throughputand
cost of the markerassaysin order to use
these markers, cost effective genotyping
platforms including KASPar (2) and
BeadXpress(4) system were developed
Theselarge scalegenomicresourceshave

linternational Crops Research Institute for the

enabled the development of superior

SemiArid Tropics (ICRISAT), Hyderabad, India chjckpeavarietiesthat can sustainthe yield

(r.k.varshney@cgiar.org)

4ndian Institute of Pulses Research (IIPR), Indit
Council of Agricultural Research (ICAR), Kanpu

India
3School of Plant Biology and the Institute of

whenexposedo stresgnvironments

Agriculture, The University of Western Australia

(UWA), Crawley, Australia
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Molecular breeding product

Advancesin chickpeagenomicsresearch
havemadeit possiblgo utilizegenomicdor
enhancingthe precisionand efficiency In
orderto usemarkersassociatedith trait of
interestindentified using linkage mapping
andgenomevideassociatiostudiesmarker
assistedackcrossingMABC) was usedto
introgressthe QTL/genomic regionin the
elite chickpeacultivars JGLL MABC has
been successfullyused to introgressthe
0QTL-hotspdt that harbors QTLs for
drought toleranceelated traits
Introgressionlines has shown improved
performancevith increasegtieldascompare
to recurrentparentin rainfed as well as
irrigatecconditiong(9). Similarlytwo parallel
MABC programmeswere undertakenat
ICRISATfor introgressionof FW and AB
resistanceby targetingfot locus and two
guantitative trait loci (QTL) regions,
ABQTL-l andABQTL-Il in C 214 anelite
cultivar of chickpea Screening of
introgressiotinesfor diseaseslentifiedFW
and AB resistantlines (10. Efforts to
pyramid the FW and AB resistanceare
underway Recently,advancemenin next
generationsequencindNGS) technologies
(8) have enabledthe use of genomewide
markerprofile/allele datafor predictionof
phenotypeof progeniedor selectiorto the
new cycle in breeding programs using
genomicselection(GS),a modernbreeding
approachEfforts to deployGSin chickpea
havebeeninitiatedusingtrainingpopulation
of elitebreedindines(5).

Issue AApril 2015
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ef fort to
genome

Figure 1A n
chickpea

Connecting phenotype to
gene(s)

The genomesequenc@rovidesthe basis
for a wide range of studies, from the
important goal of acceleratedreedingto
identifying the molecular basis of key
agronomic traits, in  additon to
understandingthe basic legume biology

show
sequencing

l'inking genome

alone,however cannotaddresshe issueof
genetic diversity, therefore efforts to re-
sequencethe 300 chickpea lines from
chickpeaeferencesetweresequencedt 5X
to 13X coveraggFig 1). Alignmentof re-
sequencéataon the referencegenomehas
identified> 4 million SNPsthat are being
used for GWAS along with multiseason
phenotypinglata

InternationalChickpeaGenomeSequencing Large scale germplasm resources are

Consortium(ICGSC)completechigh-quality
draft genomesequencef chickpea11). In

availablan differentgenebankshat canbe
usedto explorethe availablgenetidiversity

parallel, genome sequencealso became to addressheissueof low productivityand

availabldor destype (3). Draft genome

Legume Perspectives

bott | assciatdddthbnarrongenetic

sequence
initiativeo

diversity In order to utlize these
hugegermplasncollection, ICRISAT has
initiated efforts to valorize the global
compositecollectionof chickpeaomprising
3000 lines selected from genebanksof

ICRISATandICARDA (7) for identification
of novelallelesIn viewof above |CRISAT

launched 6 T h 300 Chickpea Genome
Sequencingl ni t iia t201¢ &0 far

ICRISAT hasre-sequencednore than 500
chickpealines (referenceset, elite varieties
and parentsof severatappingpopulations)
atminimum5X coverage

Issue AApril 2015
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Summary

It is evident that recent advancesin
genomics, especially in the area of
sequencingand genotyping technologies,
have revolutionizedchickpeagenomicsin
the pastdecadeFew yearsback, chickpea
usedto be known as orphancrop asvery
limited genomiaesourcesvereavailableAs
a part of severalinitiatives and strategic
collaborationswith severalpartners from
different countries, largescale genomic
resourcesncludingdraft genomesequence,
comprehensiveanscriptomassemblyigh
densitygeneti@andBIN mapsQTL mapsas
well asphysicaimapshavebeendeveloped
During the pastdecadechickpeahas been
transformedfrom genomicresourcegpoor
crop to genomicaresourcesich crop These
largescalegenomicresourcesave opened
the eraof translationafjenomicsn chickpea
to understandhe geneticof traitsandasa
result,approachetike MABC, and GS are
being used in these crops (12).Improved
lines have been developedfor drought
toleranceand resistanceéo FW and AB.
Considering the revolution in chickpea
genomicsit is anticipatedhat comingyears
will withessmore integrationof molecular
breedingtools and approacheén chickpea
breedingrogram 2

Legume Perspectives
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QTL to candidate genes: Understanding photoperic

sensitivity and flowering time in chickpea

by AmitDEOKARKetemaDABA andBunyamiT AR8® AN

Abstract Photoperiodnsensitivitys one of

the important traits for adaptation of

chickpea (Cicer arietinunmL.) to a short

growing season, particularly in Western
Canadawhere growing period is often

restrictecby endof seasorirost Identifying
QTLs/genes that regulate photoperiod
insensitivityand floweringtime will help to

understand the genetic mechanism of

photoperiod sensitivity in  chickpea
Comparativeanalysesof flowering genes
haveshownthatthe mostof floweringgenes
are well conservedin Arabidopsis and

legumesBasedon sequencéomology,we

identified 130 chickpea orthologs of

Arabidopsisflowering time genes Further,
combinedanalysif floweringtime QTLs

and candidategenemapping,we identified
two chickpeagene CaGl and CaELF3

associated with days to flower and

photoperiod sensitivityin chickpea SNP

markersbasedon the CaGl and CaELF3

candidatgeneswill enableefficientmarker

assistedelectior(MAS)of chickpeaultivars
with early flowering and photoperiod
insensitivitytraits for better adaptationof

chickpeam shortgrowingseasomreas

Key words: candidatggeneschickpeaCicer
arietinuyphotoperiodsensitivityQTLs

Chickpea(Cicerrietinurh.) is one of the
most important food legumecrops grown
over 50 countries covering around 135
million ha with the annual production of
131 milliont (4). Chickpeds a quantitative
longday plant, but flowers in every
photoperiod (9). This photoperiodic
adaptation of chickpea has been an
important factor in the wide spreadof its
cultivationto the Indian subcontinentsub
tropicalandtropicalregionsof Africa,North
Americaand Oceania(1). Allelic variation
for major adaptations traits, including
photoperiodsensitivitthasbeenidentifiedin
chickpea Four different early flowering
genexfll (identifiedfrom ICCV2), ppél or
efl2 (ICC 5010, efi3 (BGD-132 and el
(ICC 16641 and ICC 16644 have been
identifiedin chickped5). Howeverthe gene
sequencasnderlingheloci hasnot yetbeen
identified In the presenstudy weidentified
quantitativetrait loci (QTLs) and candidate
genesassociatedvith early flowering and
photoperiodsensitivityn chickpea

A recombinantnbredline (RIL) mapping
populationof 92 linesderivedfrom a cross
betweenthe early flowering, photoperiod
insensitivegenotypeICCV 96029 and a
photoperiod sensitive genotype CDC
Frontier were used for QTL mapping
Parentafgenotypesind RILs werescreened
for responsdo daysto flower underlong
day (16 h light / 8 h dark) and shortday
(10 h light/ 14 h dark) conditionswith a
temperaturef 22 °C/ 16 °C in light and
darkconditionsrespectivelyDaysto flower
wererecordedas the numberof daysfrom
emergenct the openingof the first flower.
The differencein daysto flower between
shotdayqSD)andlongday(LD) conditions
was used to determinethe photoperiod
sensitivityf theline

University of Saskatchewan, Department of Plal
Sciences, Crop Development Centre, Saskatool

Canada (bunyamin.taran@usask.ca)
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Significandifferencein parentalinesand
RILs for daysto flower underthe SD and
LD conditionswas observedIn both the
conditionsICCV 96029 flowered 28 days
earliethan CDC FrontierunderLD and63
daysearlierthan the CDC Frontier under
SD. The photoperiod sensitivityof CDC
Frontier was37 daysand ICCV 96029was
only threedays assuchCDC Frontierwas
categorised as photoperiod sensitive
whereas,ICCV 96029 as a photoperiod
insensitive genotype RILs showed
continuousvariationfor daysto flower in
SD (range23 days- 80 days)andLD (range
22 days- 53 days),and for photoperiod
sensitivityranged days 54 days)

Linkagemapwith 1,336 SNPg(3) wasused
for the QTL analysisisingthe ICIM-ADD
(compositeinterval mapping) method of
QTL-IciMapping4.0.3.0 software 11 QTLs
wereidentifiedfor daysto flowerunderSD,
LD conditionsand photoperiodsensitivity
Four QTLs were identified for days to
flower in SD condition The amount of
phenotypic variance explained by the
individual QTL ranged between 4%
(qdfSD3.2) and59 % (qdfSDb.1), andthese
four QTLs together explained 81%
phenotypic variation for days to flower
underSD conditions In the LD conditions,
four QTLs wereidentifiedfor daysto flower.
The percentageof phenotypic variance
explainedby the individual QTL ranged
between 9% (qdfLD4.1) and 36%
(qdfLD8.1), and thesefour QTLs together
explained3®% phenotypiovariationfor days
to flower under LD conditions QTLs
presenton Chi4 (qdfSD4.1, qdfLD4.1) and
Chis (qdfLD5.1, qdfLD5.1) wereidentified
for both daysto flower underSD and LD
conditions
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Comparative and functional genomics
analysesevealthat severakey genesn the
ArabidopsigArabidopsikaliangl.) Heynh)
flowering time pathwaysare conservedn
legumes (7). We found 130 chickpea
orthologsof the Arabidopsidloweringtime
pathway genes (photoperiod pathway,
circadian clock, light signalling, and
autonomougpathwaysin the CDC Frontier
genomesequencel 16 candidatgenesvere
physically located on chickpea
pseudochromosomeschrl-ch8, whereas
remaining 14 geneswere located on 14
different un-placed scaffolds Candidate
genes were resequenced to identify
sequenceariationbetweerdCCV 9602%nd
CDC Frontier The SNPin threecandidate
genesFLOWERING LOCUS D (FLD),
CRYPTOCHROME 2 (CRY2) and
GIGANTEA (GI), andan 11-bp deletionin
the coding region of early flowering 3
(ELF3) genesvereidentifiedbetweerdCCV
96029 and CDC Frontier Basedon the
candidatgenesSNPsandinsertion/deletion
information, KASP assaysvere developed
for genotypingthe RIL populations Three
SNP markers(CRY2, FLD and GI) were
mappedn Chid andELF4 on Chis.

The candidategeneCaGl mappedn the
QTL confidenceinterval of qdfSD4.1 and
qdf LD41. The CaGl spanning QTL
explained 9% and 11% of phenotypic
variationfor daysto flowerin LD and SD
conditionyespectively

The candidategeneCaELF3 mappedin
the QTL confidenceinterval of qdfSD5.1,
qdfLD5.1. The CaELF3 spanning QTL
explained11% and 5%6 of phenotypic
variationfor daysto flowerin LD and SD
conditions, respectively, and 5%% of
phenotypic variation for photoperiod
sensitivity

Legume Perspectives

The GIGANTIA is animportantregulator
of photoperiodic flowering in several
monocots and dicot plants Gl regulates
flowering by interactingwith CONSTANS
(CO), whichthenregulatdloweringactivator
FLOWERING LOCUS T (FLT) (8). The
ELF3 is a circadiarclock relatedgenethat
regulates early photoperiodnsensitive
flowing Functionalanalysisof pea (Pisum
sativuni.) and soybean(Glycinemax (L.)
Merr) ortholog of ArabidopsisGl genes
showedhat severafunctionsof Arabidopsis
Gl geneareconservedbetweerthesespecies
(6, 10. The lossof-function of ELF3 gene
promotesrapid flowering under both LD
and SD conditionsin Arabidopsispeaand
lentil (LensculinaridMedik) (Boden et al.
2014. Overall thesereportssuggesthat the
basic flowering pathwaysare likely to be
conservedn Arabidopsisand other legume
species The colocalization of chickpea
candidategenesCaGl and CaELF3 with
QTL for early flowering and photoperiod
sensitivityand conservedunction of these
genes across the plant speciesstrongly
suggestthat the CaGl and CaELF3
regulates the photoperiod response in

RESEARC
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Regulation of legume seed size by an endosperm

expressed transcription factor

by MélanieNOGUERQ Christine LE SIGNHRanessa VERNOYBGrégoire AUBERT
MyriamSANCHEZKarineGALLARD® JérdmeVERDIBRNd Richard D. THOMPSBN

Abstract There are numerousreports of
transcription factors (TFs) which are
implicatedin the control of seedsize and
seedcomposition We haveidentified,using
aplatformof TF sequencederivedrom the
Medicagnuncatulgenomesequencea class
of TFsspecificallgxpresseduringthe seed
filling stage One such TF, DASH, was
shown to be confined to the developing
endospermWe investigatedhe role played
by DASH throughanalysisf mutantalleles
Thesegiverise to seedethal or nearlethal
phenotypes, with degeneration of the
endosperm and arrested embryo
developmenfTherelationof this phenotype
to seedauxinactionwasinvestigated

Key words. auxin embryo, endosperm,
Medicageed

We are studyingseeddevelopmenin the
model legume MedicagtruncatulaGaertn
(Mtr) as a basisfor identifyingkey genes
controllingseedsizeand compositionin the
Vicioid family of cookseasoriegumessuch
aspea(Pisunsativurh.), fababean(Viciafaba
L.) andchickpedCicearietinuin.).

In one of the approachesasedto identify
candidategeneswe useda realtime PCR
platform of Mtr transcriptionfactor (TF)
sequencesp revealthoseexpressednthe

developingM. truncatulaeed(8). The 169
genesequencddentifiedweresubjectedo a

clusteranalysisvith profilesof expressionf

the major storage protein classes This

analysis permitted us to identify TFs

associatedwith the expressionof each
storageprotein family, flankedby 3 further

classesxpressetieforeor afterthesegenes
duringseeddevelopmeni). The numberof

TFs expressedpreferentiallyin the seed
filing phasewas~50. We havefocusedon

one of theseTFs, DASH, a DOF (DNA-

binding One Zinc Finger) -type TF

specifically expressedin the developing
endosperm (7). This was of particular
interestasrelatedDOF TFsarerequiredfor

endospernrspecific expressionof storage
proteincodinggenesduring the seedfilling

phaseén cereal§9).

To assigna role to DASH, we have
analyzeda stop codontruncation mutant
from a TILLING population(5), and one
transposon(TnT1) insertionmutants(2). If
we look at the seedcomplemenbf a pod
segregatintpe TnT1insertionin DASH, i.e.
heterozygoteye seeabout¥a inviableseeds

In early attemptsto recover seedson
homozygousnutantplants,we treatedpods
with auxin and observedthat this could
partlyrestorethe WT phenotypén termsof
pod and seedsize,suggestinghat auxincan
compensatdor the absenceof functional
DASH (Fig 1).

When auxin content was measuredin
developingpods,it peakedat 10 daysafter
pollination (DAP), when the endosperrmis
most active,and was36-fold higherin dash
than WT. This suggestauxinactionin the
endospermmay be important for embryo
development, and that auxin balance
between different seed tissues may be
deregulateidh dash

To understandetterthe role of DASH,
welookedatgenegpotentiallyegulatedbyit,
by comparing the WT and mutant
transcriptomesat 8 and 10 DAP using
Affymetrix arrays (1). This yielded 545
differentiallyexpressegrobes Among the
most downregulatedgenesin dashwere
threesequencesncodingsmallcysteingich
peptideg CRP),one of whichwasshownby
in situ hybridization to be expressed

displayingembryo arrest and degenerated specificallyin the chalazalendosperm|ike

endosperm The embryois retarded,and
doesnot developbeyondthe globularstage,
whenwild-type(WT) seedsrealreadat the
heartstage For the EMS mutant, whereas
homozygousmutant seedssegregatingn
heterozygous plants show the same
developmentahrrest,we obtaineda single
homozygousutantline out of asegregation
of 200seedsAlthoughthis dasHine shows
normalvegetativggrowth, we observedgod
abortion throughout most of the growth
period,but pod andseedsetoccurredat the
end of the growth cycle Most of the

1INRA, UMR1347AgroécologieDijon, France
(richard.thompson@dijon.inra.fr

°The Samuel Roberts Noble Foundation, Plant
Biology Division, Ardmore, USA / Chinese
Academy of Sciences, Shan@leaiterfor Plant
Stress Biology, Shanghai, China
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resultinghomozygousnutant seedswhich
germinatethadmorphologicahbnormalities,
frequentlypossessingsedcotyledons

DASH suggestingthat this gene might
possiblybe involvedin the samepathway
CRPshavebeenassignediliverserolesand
somememberf this family areimplicated
in processessuch as fertilization, female
gametophyteor seed development (6).
Recently, 180 small CRPs expressedin
developingeedof ArabidopsigArabidopsis
thaliand_.) Heynh) wereidentified(3). They
showeda specificfamily of peptidescalled
ESFL (Embryo Surrounding Factor 1),
accumulatedefore fertilization in central
cell gametesand thereafterin embrye
surroundingendospermcells, required for
proper early embryonic patterning by
promoting suspensorelongation (3). The
possible role of small peptidesin early
endosperm developmentremains to be
studied
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Figure 1Pods and seeds from dash mutant flefhmutant treated with IAA (middle) and
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